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Abstract. Studies on visual attention traditionally focus on its physio-
logical and psychophysical nature [16, 18, 19], or its algorithmic applica-
tions [1, 9, 21]. We here develop a simple, formal mathematical model of
the advantage of spatial attention for object detection, in which spatial
attention is defined as processing a subset of the visual input, and de-
tection is an abstraction with certain failure characteristics. We demon-
strate that it is suboptimal to process the entire visual input given prior
information about target locations, which in practice is almost always
available in a video setting due to tracking, motion, or saliency. This
argues for an attentional strategy independent of computational savings:
no matter how much computational power is available, it is in principle
better to dedicate it preferentially to selected portions of the scene. This
suggests, anecdotally, a form of environmental pressure for the evolution
of foveated photoreceptor densities in the retina. It also offers a general
justification for the use of spatial attention in machine vision.

1 Introduction

Most animals with visual systems have evolved the peculiar trait of processing
subsets of the visual input at higher bandwidth (faster reaction times, lower
error rates, higher SNR). This strategy is known as focal or spatial attention
and is closely linked to sensory (receptor distribution in the retina) and motor
(eye movements) factors. Motivated by such wide-spread attentional processing,
many machine vision scientists have developed computational models of visual
attention, with some treating it broadly as a hierarchical narrowing of possibili-
ties [1, 2, 8, 9, 17]. Several studies have demonstrated experimental paradigms in
which various such attentional schemes are combined with recognition/detection
algorithms, and have documented the resulting computational savings and/or
improved accuracy [4—7, 20, 21].
Here, we seek to describe a general justification for spatial attention in the

context of an object detection goal (detecting targets in images wherever they
occur). We take an abstract approach to this phenomenon, in which both the
attentional and detection mechanisms are independent of the conclusions. Simi-
lar frameworks have been proposed by other authors [3, 10]. The most common
justification for attentional processing, in particular in visual psychology, is the
computational saving that accrue if processing is restricted to a subset of the
image. For machine vision scientists, in an age of ever decreasing computational
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costs of digital processors, and for biologists in general, the question is whether
there are other justifications for the spatial spotlight of attention. We will address
this in three steps which form the core substance of this paper:
1. (Section 2) We demonstrate that object detection accuracy can be im-

proved using attentional selection in a motivating machine vision experiment.
2. (Section 3) We model a generalized form of this system and demonstrate

that accuracy is optimal with attentional selection if prior information about
target locations is not or cannot be used to bias detector output.
3. (Section 4) We then demonstrate that, even if priors are used optimally, if

there is a fixed computational resource which can be concentrated or diluted over
locations in the visual scene, with corresponding modulations in accuracy, that
it is optimal to process only the most likely target locations. We show how the
optimal extent of this spatial attention depends on the environment, quantified
as a specific tolerance for false positives and negatives.

2 Motivating Example

2.1 Experiment

An important problem in machine vision is the detection of objects from broad
categories in cluttered scenes, in which a target may only take up a small fraction
of the available pixels. We built a system to solve an instance of this "object
detection" problem: detecting cars and pedestrians wherever they occurred in
a fully annotated video of 4428 frames, captured at 15fps at VGA (640x480)
resolution.
Training images (47,459 total, of which 4,957 are positive examples) were

gathered from [11] and [12]. The object detection system worked in two steps
for each frame independently:
1. A saliency heat map [9] for the frame (consisting of color, orientation, inten-

sity, motion, and flicker channels) was computed and subsequently serialized into
an ordered list of "fixation" locations (points) using a choose-maximum/inhibit-
its-surround iterative loop. A rectangular image crop ("window") around each
fixation location was selected using a crude flooding-based segmentation algo-
rithm.
2. The first F ∈ {1, 3, 5, 7, 9} fixation windows were then processed using a

detection module (one for cars and one for pedestrians), which in turn decided
if each window contained its target object type or not. The detection modules
based their classification decision on the output of an SVM, with input vectors
having components proportional to the multiplicity of certain quantized SIFT
[14] features over an image subregion, with subregions forming a pyramid over
the input image — this method has proven quite robust on standard benchmarks
[13].

2.2 Results

We quantified the performance by recording four quantities for each choice of
F windows per frame: (1) True Positive Count (TPC) — the number of win-
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dows, pooled over the entire video1, in which a detection corresponded to a
true object at that location. (2) False Positive Count (FPC) — windows labeled
as a target where there was actually not one, and using the False Negative
Count, FNC (number of targets undetected), (3) precision = TPC/(TPC+FPC)
— fraction of detections which were actually target objects, and (4) recall =
TPC/(TPC+FNC) — fraction of target objects which were detected.
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Fig. 1. Result of running detector over entire video. As the number of windows
processed per frame increases, recall rate increases (left), while precision rate
decreases (right). Left: curves for different settings of the SVM detection threshold.

The results for pedestrian detection are shown in Fig. 1. Results on cars were
qualitatively equivalent.
Each data point in Fig. 1 corresponds to results over the pooled video frames,

but at each frame the number of windows processed is not the same: we para-
meterize over this window count along the x-axis. All plots in this paper use
this underlying attention-parameterizing scheme, in which processing one win-
dow corresponds to maximally focused attention, and processing them all corre-
sponds to maximally blurred attention. The results in Fig. 1 indicate that, in our
experiment, the recall rate increases as more windows are processed per frame,
whereas the precision rate falls off. Therefore, in this case, it is reasonable to
process just a few windows per frame, i.e., implement an attentional focus, in
order to balance performance, independent of computational savings.
This can be understood by considering that lower-saliency windows are a

priori unlikely to contain a target, and so their continued processing yields a
false positive count that accumulates at nearly the false positive rate of the
detector. The true positive count, on the other hand, saturates at a small number
proportional to the number of targets in the scene. These two trends yield a
decreasing precision ratio. This is seen more directly in Fig. 2 below, where we
plot the average number of pedestrians contained in the first F fixation windows
of a frame, noting that the incremental increase (slope) per added window is
decreasing. We will see in the next section how the behavior observed here is
sensitive to incorporating priors into detection decisions.

1 results shown are for 20% of the frames uniformally sampled from the video
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Fig. 2. The average number of pedestrians contained in the first F windows. The
dotted line connects the origin to the maximum point on the curve, showing
what we would observe if pedestrians were equally likely to occur at each fixation.
But since targets are more likely to occur in early fixations, the slope decreases.

3 A simple mathematical model of spatial attention for
object detection

In this section, we model a generalized form of the system in the experiment
above, and explore its behavior and underlying assumptions.

3.1 Preliminaries

We suppose henceforth that our world consists of images/frames streaming into
our system, that we form window sets over these images, somehow sort these
windows in a negligibly cheap way (e.g., according to fixation order from a
saliency map, or due to an object tracking algorithm), and then run an object
detection module (e.g., a pedestrian detector) over only the first w of these
windows on each frame, according to sorted order, where w ∈ {1, 2, ...,N}. We
will refer to the processing of only the first w windows as spatial attention, and
the smallness of w as the extent of spatial attention.2

We will model the behavior of a detection system as a function of w. Define3

T (w) , # targets in first w windows

FPC(w) , # false positives in first w windows (incorrect detections)

TPC(w) , # true positives in first w windows (correct detections)

FNC(w) , # false negatives (in entire image after processing w windows)

TNC(w) , # true negatives (in entire image after processing w windows)
2 see Appendix for table of parameters
3 C is for count, as in FalsePositiveCount = FPC
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These counts determine the performance of the detection system, and so we will
calculate their expected values, averaged over many frames. To do this, we define
the following: For a single frame/image, let Ti be the binary random variable
indicating whether there is in truth a target at window i, with 1 corresponding
to presence. Let Di be the binary random variable indicating the result of the
detection on window i, with 1 indicating a detection. Then:

E[T (w)] =
wX
i=1

E[Ti] =
wX
i=1

pi, where pi , Pr{Ti = 1}

E[FPC[w]] =
wX
i=1

E[FPi] where FPi =
½
1 if Di = 1 and Ti = 0
0 otherwise

=
wX
i=1

p(Di = 1|Ti = 0) · (1− pi) = fpr · (w −E[T (w)])

E[TPC(w)] =
wX
i=1

E[TPi], where TPi =
½
1 if Di = 1 and Ti = 1
0 otherwise

=
wX
i=1

p(Di = 1|Ti = 0) · pi = tpr ·E[T (w)]

Where the false and true positive rates, fpr , p(Di = 1|Ti = 0) ∀i, and
tpr , p(Di = 1|Ti = 1) ∀i, are taken to be properties of the detector. Similarly,

E[FNC(w)] = n−E[TPC(w)], where n , E

"
NX
i=1

Ti

#
=

NX
i=1

pi = E[T (N)]

Since
NX
i=1

Ti = TPC(w) + FNC(w) = # of windows with a target in image

And

E[TNC(w)] = (N − n)−E[FPC(w)], because:

N −
NX
i=1

Ti = FPC(w) + TNC(w) = # of windows without a target in image

3.2 Decreasing precision underlies utility of spatial attention

We shall now use the quantities defined above to model the precision and re-
call trends demonstrated in the motivating example. But, first we must make a
modeling assumption: suppose that pi is decreasing in i such that:

E[T (w)] = n
1− exp(−w/k)
1− exp(−N/k)

(1)
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which has a similar form to that in Fig. 2. Note that this yields E[T (0)] = 0,
and E[T (N)] = n, as above, where n represents the average number of target-
containing windows in a frame. Below we plot this profile for several settings of k,
with n = 2 and N = 1000 (more nearly continuous/graded than the motivating
experiment for smoothness):
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Fig. 3. A model of the average number of targets in highest w priority windows.

Larger values of k correspond to E[T (w)] profiles which are closer to linear.
Linearly increasing E[T (w)] corresponds to constant pi so that

Pw
i=1 pi increases

an equal amount for each increment of w. Concave down profiles above the line
corresponding to decreasing pi profiles, in which the incremental contribution
to E[T (w)] from

Pw
i=1 pi is higher for low w. Such decreasing pi represent an

ordering of windows where early windows are more likely to contain targets than
later windows. In practice, one can almost always arrange such an ordering since
targets are likely to remain in similar locations from frame to frame, be salient,
or move, or be a certain color, etc.. Here, we are not concerned with how this
ordering is carried out, but assume that it is.
Let subscript-M denote a particular count accumulated over M frames. As

the number of frames M grows,

lim
M→∞

TM (w) = lim
M→∞

MX
image=1

Timage(w) =M ·E[T (w)]

by the Central Limit Theorem, where Timage(w) is the number of targets in
image. Using similar notation, the precision afterM images have been processed
approaches:

lim
M→∞

precM (w) = lim
M→∞

TPCM (w)

TPCM (w) + FPCM (w)

=
M ·E[TPC(w)]

M ·E[TPC(w)] +M ·E[FPCM (w)]
=

E[TPC(w)]

E[TPC(w)] +E[FPCM (w)]
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Equivalently, the recall approaches

lim
M→∞

recM (w) =
E[TPC(w)]

E[TPC(w)] +E[FNCM (w)]
.

Define prec(w) , limM→∞ precM (w), and rec(w) , limM→∞ recM (w).
Using the model equation (1), and the equilibrium precision and recall de-

finitions, we see that we can qualitatively reproduce the experimental results
observed in Fig. 1:
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Fig. 4. Equilibrium precision and recall rates using a model E[T (w)]

Simulation results suggest that this decreasing precision, increasing recall
holds under a wide variety of concave profiles E[T (w)] (including all parameter-
ized in (1)), and detector rates properties (tpr, fpr). A few degenerate cases will
flatten the precision curve: a linear E[T (w)] and/or a zero false positive rate,
i.e., zero ability to order windows, and a perfect detector, respectively. Other-
wise, recall and precision pull performance in opposite directions over the range
of w, and optimal performance will be somewhere in the middle depending on
the exact parameters and objective function, e.g., area under ROC or precision-
recall curve. Therefore, it is in this context best to process only the windows
most likely to contain a target in each frame, i.e., implement a form of spatial
attention.

tpr, fpr fixed ∀i means having little faith in, or no ability to calculate,
one’s prior belief. This model is realistic if one does not have faith in, or
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ability to calculate, one’s prior belief: i.e., the order of windows is known, but not
specifically P (Ti = 1). Formally, in a Bayesian setting, one would assume that
there is a pre-decision detector output Dic ∈ θ with constant known densities
p(Dic|Ti). Then,

tpr = P (Di = 1|Ti = 1) = Pr(Dic ∈ θ+|Ti = 1), (2)

where θ+ is the largest set such that

LLR =
p(Dic|Ti = 1)P (Ti = 1)
p(Dic|Ti = 0)P (Ti = 0)

> 1 ∀Dic ∈ θ+ (3)

Very notably, the definition in (2) yields a tpr which is not the same for
all i (as modeled previously), and in particular, which depends on the prior
P (Ti = 1) = pi. Similarly,

fpr = P (Di = 1|Ti = 0) = Pr(Dic ∈ θ+|Ti = 0),

also depends on pi. Only if one assumes that P (Ti = 1) = P (Ti = 0), then (3) is
the same for all i, and so is (2). Having constant tpr and fpr ∀i is also equivalent
to evaluating the likelihood ratio as:

LLR =

µ
p(Dic|Ti = 1)
p(Dic|Ti = 0)

¶γ
P (Ti = 1)

P (Ti = 0)

in the limit as γ → ∞, or putting little faith into the prior distribution. This
is somewhat reasonable given the motivating experimental example in section
2. The output of the detector is somehow much more reliable than whether a
location was salient in determining the presence of a target, and the connection
between saliency and probability of a target P (Ti = 1) may be changing or
incalculable.
Importantly, if a prior distribution is available explicitly, then the false posi-

tive counts FPC(w) saturate at high values of w which are unlikely to contain a
target, and the utility of not running the detector on some windows is eliminated,
although it still saves compute cycles.

4 Distributing a fixed computational resource

In the previous section, we assume that it makes sense to process a varying
number of windows with the same underlying detector for each window. A more
realistic assumption about systems in general is that they have a fixed computa-
tional resource, and that it can be and should be fully used to transform input
data into meaningful detector outputs.
Now, suppose the same underlying two-step model as before: frames of images

stream in to our system, we somehow cheaply generate an ordered window set
on each of these, and select a number w of the highest-priority windows, each of
which will pass through a detector.
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Here, we impose an additional assumption: that the more detection compu-
tations are made (equivalently, the more detector instances there are to run in
parallel), the weaker each individual detection computation/detector must be,
in accordance with the conservation of computational resource. Below, we de-
rive a simple detector degradation curve, and then use it to characterize the
relationship between the risk priorities of a system (tolerance for false posi-
tives/negatives) and its optimal extent of spatial attention, viz., how many win-
dows down the list it should analyze.

4.1 More detectors, weaker detectors

We assume that a detector DT is an abstraction which provides us with informa-
tion about a target. For simplicity, suppose that it informs us about a particular
real-valued target property x, like its automobility or pedestrianality. Then the
information provided by detector DT is:

IDT , H0 −HDT , H(P0(x))−H(PDT (x))

where PDT (x) is the density function over x output by the detector, and H0 =
H(P0(x)) is the entropy in x before detection, where P0(x) is the prior distrib-
ution over x.
It seems intuitively clear that given fixed resources, one can get more infor-

mation out of an aggregate of cheap detectors than out fewer more expensive
detectors. One way to quantify this is by assuming that the fixed computational
resource is the number of compute "neurons" R, and that these neurons can be
allocated to understanding/detecting in just one window, or divided up into s
sets of R/s neurons, each of which will process a different window/spatial lo-
cation. There are biological data suggesting that neurons from primary sensory
cortices to MTL [15] fire to one concept/category out of a set, i.e. that the num-
ber of concepts encodable with n neurons is roughly proportional to n, and so
the information n neurons carry is proportional to log(n). Thus, a good model
for how much information each of s detectors provides is log

¡
R
s

¢
, where log(R)

is some constant amount of information provided if the entire computational
resource were allocated to one detector.
Let DT1 denote the singleton detector comprised of using the entire com-

putational resource R, and DTs denote one of the s detectors using only R/s
"neuronal" computational units. Then,

IDT1 = H0 −HDT1 = log(R), and IDTs = H0 −HDTs = log (R/s)⇐⇒
HDTs −HDT1 = log(R)− log(R/s) = log(s),

that is, that the output of each of s detectors has log(s) bits more uncertainty
in it than the singleton detector.
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4.2 FPC, TPC, FNC, and TNC for this system

We will assume this time that the detector is Bayes optimal, i.e. that it in-
corporates the prior information into its decision threshold. For simplicity, and
with some loss of generality, assume that the output probability density on x
of the detectors is Gaussian around means +1 and −1 corresponding to target
present and absent, resp., with standard deviation σDT . Then, since the differ-
ential entropy of a Gaussian is log(σ

√
2πe), a distribution which is log(s) bits

more entropic than the normal with σDT1 has standard deviation s ·σDT1 , where
σDT1 characterizes the output density over x of the detector which uses the en-
tire computational resource. Therefore, since we assume we process w windows,
we will employ detectors with output distributions having σ = w · σDT1 .
The expected false positive count of our system, if it examines w windows is,

from section 3.1:

E[FPC(w)] =
wX
i=1

p(Di = 1|Ti = 0)p(Ti = 0)

=
wX
i=1

fpri · p(Ti = 0) (4)

To calculate fpri, we examine the likelihood ratio at window i, corresponding
to the prior pi :

LLRi =
p(Di|Ti = 1)
p(Di|Ti = 0)

pi
1− pi

=
exp(−(Di − 1)2/2σ2)
exp(−(Di + 1)2/2σ2)

· pi
1− pi

= exp(2Di/σ
2) · pi

1− pi

Di = 1 when LLRi > 1 =⇒

exp(2Di/σ
2) >

1− pi
pi

⇐⇒ 2Di/σ
2 > log

µ
1− pi
pi

¶
⇐⇒

Di >
σ2

2
log

µ
1− pi
pi

¶
Thus,

fpri = p

µ
Di >

σ2

2
log

µ
1− pi
pi

¶¯̄̄̄
Ti = 0

¶

= Q

⎛⎝ σ2

2 log
³
1−pi
pi

´
+ 1

σ

⎞⎠
= Q

µ
σ

2
log

µ
1− pi
pi

¶
+
1

σ

¶
(5)
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where Q (·) is the complementary cumulative distribution function the standard
normal. Substituting (5) into (4) gives:

E[FPC(w)] =
wX
i=1

Q

µ
σ

2
log

µ
1− pi
pi

¶
+
1

σ

¶
(1− pi). (6)

Similarly,

E[TPC(w)] =
wX
i=1

Q

µ
σ

2
log

µ
1− pi
pi

¶
− 1

σ

¶
pi (7)

and the other two are dependent on these as usual: E[TNC(w)] = (N − n) −
E[FPC(w)], and E[FNC(w)] = n−E[TPC(w)].

4.3 Optimal distributions of the computational resource

Equations (6)-(7) are difficult to analyze as a function of w analytically, so
we investigate their implications numerically. To begin, we use a model from
equation (1), with n = 3 expected targets per total frame, N = 100 windows,
prior profile parameter k = 20, and σDT1 = 2/N . The results are shown below:
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Fig. 5. Performance of an object detection system with fixed computional resource.

We observe the increasing recall, decreasing precision trend for low w values,
now even with perfect knowledge of the prior. This suggests that, at least for this
setting of parameters, resources are best concentrated among just a few windows.
The most striking feature of these plots, for example of the expected true positive
count shown in green, is that there is an optimum around 20 or so windows. This
corresponds to where the aggregate information of the thresholded detectors is
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peaked — beyond that, the detectors are spread too thinly and become less useful.
Note that this is in contrast to the aggregate information of the pre-threshold
real-valued detection outputs, which increases monotonically as w log(R/w).

It is interesting to understand not only that subselecting visual regions is
beneficial for performance, but how the exact level of spatial attention depends
on other factors. We now introduce the notion of a "Risk Profile":

w∗(α) = argmin
w
{αE[FPC(w)] + (1− α)E[FNC(w)]} .

That is, suppose a system has penalty function which depends on the false posi-
tives and false negatives. Both should be small, but how the two compare might
depend on the environment: a prey may care a lot more about false negatives
than a predator, e.g.. For a given false positive weight α, the optimal w∗ cor-
responds to number of windows among which the fixed computational resource
should be distributed in order to minimize penalty. We find (see Fig. 6), that an
increasing emphasis on false negatives (low α), leads to a more thinly distrib-
uted attentional resource being optimal. Thus, in light of this simple analysis, it
makes sense that an animal with severe false negative penalties, such as a grazer
with wolves on the horizon, may have evolved to spread out its sensory-cortical
hardware over a larger spatial region — and indeed grazers have an elongated
visual streak rather than a small fovea.

The general features of the plots shown in Fig. 5 hold over a wide range of
parameters. We summarize the numerical findings by showing the risk profiles
for a few such parameter ranges:
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Fig. 6. The optimal number of windows out of 100 to process, for increasing α,

the importance of avoiding false positives relative to false negatives. sigma1≡ σDT1

The important feature of all these plots is that the optimal number of win-
dows w over which to distribute computation in order to minimize the penalty
function is always less than N = 100, and that the risk profiles increase to
the left, with increasing false negative count importance, for a wide range of
parameterized conditions.
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5 Conclusions

We have demonstrated, first in experiment and then using a simple numerical
model, the critical importance of attentional selection for increased accuracy
in a detection task. We find that processing scene portions which are a priori
unlikely to contain a target can hurt performance if this prior information is
not utilized to bias detection decisions. However, if the computational resources
available for detection are fixed and must be distributed somehow to various
scene portions, with a corresponding dilution in accuracy, it is best to concentrate
them on scene portions which are a priori likely to contain a target, even if
prior information biases detector outputs optimally. Note that this argues for
an attentional strategy independent of computational savings — no matter how
great the computational resource, it is best focused attentionally. We also show
how a system which prioritizes false negatives high relative to false positives
benefits from a blurred focus of attention, which may anecdotally suggest an
evolutionary pressure for the variety in photoreceptor distributions in the retinae
of various species. In conclusion, we provide a novel framework within which to
understand the utility of spatial attention, not just as an efficiency heuristic, but
as fundamental to object detection performance.
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7 Appendix

Table of parameters:

N # of windows available to process in a frame
w # of windows processed in a frame
n average # of target-containing windows in a frame
k poverty of prior information ⇒lower k, better a priori sorting of windows
σDT1 standard deviation of detector output, if only one detector is used
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