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Abstract — We describe an integrated system for intelli-
gent compression and transmission of copious data acquired by
spaceborne instruments. At its core, our system contains a mod-
ification of a progressive image compression algorithm, ICER,
that will be used on the Mars Exploration Rovers (to be launched
in 2003). The ICER algorithm applies a wavelet decomposition
and prioritizes the compressed bit layers from the wavelet sub-
bands so as to (attempt to) progressively transmit the layer that
gives the largest improvement in image quality per transmitted
bit. Our modified version accepts additional input priorities that
reflect the relative importance of various “regions of interest” in
the source data, and arranges its output packets to reflect both
the input regional priorities and the wavelet bit layer priorities.

The output of the data compression module is supervised by
an intelligent buffer manager that shuffles the prioritized pack-
ets from many different source images and tries to select packets
for transmission that will maximize the total science value re-
ceived on the ground. Just as importantly, it attempts to discard
only the least valuable packets when the buffer overflows, which
is inevitable if the average data transmission rate is lower than
the average data collection rate.

After briefly describing our current system, the paper ana-
lyzes in more detail various algorithms for optimization of the
buffer control algorithm, for bit allocation across regions of the
source data, and for efficiently compressing data features use-
ful for establishing a prioritization feedback loop between space-
craft and ground.

I. DESCRIPTION OF THEOVERALL SYSTEM

We are developing integrated data compression and buffer man-
agement algorithms to maximize the science value of data returned
from spacecraft instruments. Typically, imagers and remote sensors
have the capability to collect far more data than can be transmitted
to earth, and it is important to maximize the science value of the data
returned. Onboard science processing algorithms that recognize sci-
entifically relevant features in the collected data can be used to drive
progressive data compression algorithms such as wavelet-based im-
age compression. During progressive compression, the science data
is parsed into hierarchical data segments that yield continual but di-
minishing improvement of fidelity with each segment. The compres-
sion schemes for science-directed progressive compression produce
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data segments specially tailored to “regions of interest” (ROIs) spec-
ified by science processing modules. The prioritized buffer manager
tries to ensure that the highest priority data segments are transmitted
first, and the least valuable data segments are discarded.

Our approach is to adapt existing progressive compression algo-
rithms for amenability with identified ROIs, and to develop buffer
strategies for prioritizing, storing, and delivering the most valu-
able compressed segments, and eventually reconstituting the original
data. We attempt to incorporate ROI considerations across many im-
ages or different data types. These algorithms are subject to practical
limits on the onboard computers speed, memory, and storage. We
attempt to measure the gain in science return versus required pro-
cessing speed, memory, and storage of the onboard computer.

II. T HE CURRENT ALGORITHMS

The current system takes the raw data together with a data pri-
oritization map and produces packets of compressed data using a
modified version of the ICER wavelet-based compression software.1

Then the prioritized buffer manager decides which packets to ad-
mit, discard, or transmit, depending on their priorities and given con-
straints on the buffer’s input and output rates.

A. DATA PRIORITIZATION

A data prioritization map is an assignment of a priority number
to each pixel of an image. In our implementation, a priority number
is an integer in the range 0–5, with higher numbers indicating higher
priority. A difference of some numberb between two priority num-
bers indicates that the higher priority pixel should be reconstructed
to roughlyb more bits of precision than the lower priority pixel.

The priority map is generated by identifying and classifying fea-
tures of the source image that are of interest to the data’s scientist-
users. How to best produce such a map is a very complex question,
and one best left to the scientists for each intended application. Our
system does include some rudimentary general-purpose classifica-
tion algorithms based on colors and textures, but the main purpose
of this system is to provide scientists with powerful tools for intelli-
gently compressing and transmitting their source data no matter how
the priorities have been identified.

B. ROI COMPRESSION ALGORITHM

We have modified the ICER software to accept the additional in-
put of a priority map indicating the relative importance of regions of

1Developed at JPL by A. Kiely and M. Klimesh.



the image. The compression takes the priority map into account and
produces as output a sequence of packets paired with priority values.
The priority values serve as a means of comparing the importance of
packets, even those from separate images (assuming of course that
the corresponding priority maps are also comparable).

As in the basic ICER, the input image is transformed using a
wavelet decomposition. A priority map is computed for the wavelet-
transformed image such that the spatial correspondence that existed
between the original image and priority map is maintained between
the transformed image and transformed priority map. Specifically,
the priority corresponding to a transformed pixel is equal to the max-
imum priority of the original image pixels to which the transformed
pixel corresponds.

Pixel priorities are incorporated into the compression in a man-
ner similar to that in [2]. Each pixel of the transformed image is
left-shifted (multiplied by two) a number of times equal to the cor-
responding value in the transformed priority map. This modified
transformed image is now compressed progressively one bit layer
at a time, by a procedure similar to that used in the basic ICER. The
packets produced are assigned priority values based on the bit layers
for which they contain data. The output packets form a progressively
coded “chain,” such that truncation of the chain at any point leaves a
subset of packets that can be used to reconstruct the original image
with a certain amount of distortion, which decreases monotonically
with the number of packets retained.

Each transformed pixel has a dynamic range which depends on
the dynamic range of the original image and on the subband to which
the pixel belongs. The process of modifying the transformed image
by left-shifting pixels changes the bit positions for which the pixels
are necessarily zero, and in addition these positions now can vary
within a subband. Thus, to maintain compression efficiency, ROI
ICER contains provisions for compressing only those bits which are
allowed to be nonzero.

The decompressor requires as input the same priority map sup-
plied to the compressor. After decoding the (approximation to) the
modified transformed image, the pixels of this image are right-shifted
by the values in the transformed priority map, thereby undoing the
opposite process which occurred during compression.

The input images are color RGB images. Before compression, the
images are transformed into the YCrCb domain, producing three new
sub-images, one for each component, all referred to the same priority
map. These images are compressed separately and produce separate
chains of output packets with priority values. The priority values
are suitable for comparing the priorities of packets from different
components.

C. BUFFER MANAGEMENT ALGORITHMS

Our baseline buffer manager uses a simple form of double-valued
prioritization. It determines all admissions and discards from the
buffer according to the packet priorities computed by ROI ICER.
However, the order of transmissions from the buffer is based on a
simple first-in, first-out (FIFO) prioritization among all packets that
survive the ROI-prioritized admission/discard process.

Using a FIFO transmission priority insures that all transmissions
will consist of truncated chains of packets as produced by ROI ICER.
This eliminates the need to unshuffle the packets received on the
ground, because the successive (truncated) packet chains can be used
to reconstruct the source images in the same order in which they were
acquired, but to different levels of distortion depending on how many

packets from each chain survived the prioritized admission/discard
process.

The buffer management algorithm described here is the same with
respect to buffer admissions and discards as the “on-line algorithm
with buffer sorting” described in Section III.C, but that algorithm
also does full sorting by packet priorities to determine transmissions.
Thus far, we have not noticed any large penalty for substituting the
much simpler FIFO transmission protocol as long as we use the ROI-
coded packet priorities to determine admissions and discards. But
this tradeoff is a subject for further research.

III. R ESEARCH ONFUTURE ALGORITHMS

In parallel with developing our baseline system, we are also con-
ducting research into various algorithmic approaches whereby the
system performance might be improved or better understood.

A. FEATURE COMPRESSION AND CLASSIFICATION FOR

PRIORITIZATION FEEDBACK

Priority should be given to information that has high science
value, and in particular to information that is novel. This novelty
should be determined with respect not only to a priori notions of
what is to be expected, but also with respect to what has recently
been transmitted. In other words, we would like to keep track of in-
formation already captured and give preference to transmitting data
that has not been seen before. This requires keeping a database to
represent information that has already been received. However, it
is unrealistic to keep such a system entirely on board due to finite
onboard memory and storage capacity.

We assume that to prioritize the data the onboard device first ex-
tracts features from the image regions. An unassisted onboard prior-
itization module would then assign priorities based on these features,
perhaps comparing them to a limited history of previously transmit-
ted features remembered in the onboard storehouse. But if these fea-
tures are compressed and transmitted to the ground, they can be com-
pared with the essentially unlimited ground database to determine
whether the corresponding image information should be given high
priority for transmission. If the distance between the transmitted
features and the best match in the database is large , the correspond-
ing image (or image section) should be given high priority. By doing
this we establish a prioritization feedback loop between spacecraft
and ground. The ground database is used to classify unknown fea-
tures. Moreover this database is continuously updated to incorporate
new data as it is received. For example, when a new feature has been
found, the corresponding feature set will be inserted in the database
as a new entry if it is classified as an “outlier.”

Several criteria should be kept in mind to design such a compres-
sion and classification system. The improved prioritization scheme
comes with a cost. Feature information must be transmitted to the
ground database, and it is important to compress this information ef-
ficiently. Efficiency of a compression scheme is measured both by
its rate versus classification performance, and by its conservation of
onboard processing power, i.e., its coding complexity.

Several scenarios for a system to compress feature information
were considered in [6], where a quantizer is applied before classi-
fication; we call this approach SystemA. In this paper we present
a hybrid compression-classification system (SystemB) where the
classifier is broken into two stages, one applied before, and the
other after the quantizer. Figure 1 shows a block diagram of such
a system. By applying a pre-classifier before compressing the data,
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Figure 1: A hybrid compression-classification system

the original sample spaceS is partitioned into a set of subspaces
{Si , i = 1, . . . , K }. Then we are able to exploit the local statis-
tics of the data in each subspace by designing separate quantizers
{Qi , i = 1, . . . , K } for them. Thus, the hybrid SystemB should
achieve improved compression efficiency relative to SystemA, at
a cost of slightly more onboard complexity to perform the pre-
classification.

In this paper we consider a Decision Tree Classifier (DTC) [7]. In
a DTC, the sample space is partitioned hierarchically and organized
in a tree structureT which is used to answer the query in logN time,
whereN is the number of samples in the database. A decision tree
classifier can be easily broken into a pre-classifierT0, which is kept
on board, and a set of final classifiers{Ti , i = 1, 2, . . . , K }, kept on
the ground, as shown in Figure 2. Any partitioning of the original
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T1 T2 TK

Figure 2: Partitioning the decision tree classifier

decision treeT is completely determined as soon as we haveT0.
Then{Ti , i = 1, . . . , K } are just the subtrees rooted at the leaf nodes
{vi , i = 1, . . . , K } of T0.

For any given pre-classifier subtreeT0, the cost for the system is
primarily due to two terms:

F(Q,T , T0) = C(T0) + λ

K∑
i =1

R(T0, Qi , Ti )P(Ti ) (1)

whereC(T0) is the onboard computational cost for traversing subtree
T0, R(T0, Qi , Ti ) is the misclassification risk of a query following
the branchT0 → Qi → Ti , andP(Ti ) is the associated probability.
The parameterλ controls the tradeoff between the onboard classifi-
cation cost and the reduction in misclassification. The optimization
problem is then, given a training setL, find T0

� such that:

F(Q,T , T0
�) = min

T0
F(Q,T , T0) such thatC(T0) ≤ Conboard

(2)
with Conboardthe maximum computational complexity allowed for
doing such a pre-classification on board.

To find the optimal pre-classifier subtreeT�
0 , optimal in the sense

of minimizing the expected cost to compress and classify an un-
known feature, requires an exhaustive search. In this paper we use a

heuristic method, the pruning method of Chou et al [8], to determine
the pre-classifier subtreeT0. We start by building a binary treeT
based on a labeled training setL = {X, Y} generated from the Bro-
datz texture album [9].X is the wavelet texture feature vector [10]
andY is the texture label associated with it. The tree is built in a top-
down manner [7] using theK -means [8] algorithm until each leaf
node contains only one class label. The dissimilarity between two
feature vectors is measured by anL1-norm distance function. Then
we pruneT with respect to the Marginal Return cost function [8],
until the constraintC(T0) ≤ Conboardis satisfied. C(T0) is mea-
sured as the expected depth of the treeT0, andD is measured as the
expected distortion:

D = E
[
d(xi , ci )

]
(3)

whereci is the centroid of samples lying within leaf nodevi , and
d(·) is the L1-norm distance function. By performing the pruning,
we expect to make the distortion of the pre-classifierT0 as low as
possible under the constraint of the onboard complexity budget.

We compare SystemsA and B in terms of classification perfor-
mance and overall complexity at different bit rates. Uniform scalar
quantizers are used for this experiment. For SystemA, each feature
vector is uniformly quantized and then classified using the tree clas-
sifierT . For SystemB, the original treeT is partitioned into an on-
board pre-classifierT0 and four final classifiers{Ti , i = 1, 2, 3, 4}.
The input feature vector is pre-classified to decide to which of the
subspaces{Si , i = 1, 2, 3, 4} it belongs, and then it is quantized us-
ing a corresponding uniform quantizer{Qi , i = 1, 2, 3, 4}. At the
receiver, the quantized feature vector is sent to the final classifierTi ,
which outputs a class label. Figure 3 compares the probability of cor-
rect classification at different bit rates for systemsA andB. We see
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Figure 3: Probability of correct classification for SystemsA
andB

that SystemB achieves better performance due to the fact that the
individual quantizersQi can exploit the local statistics of the sub-
spacesSi . Note that because the texture labels are given to the test
images beforehand, it is possible that using the tree classifier will
result in a wrong label even when unquantized features are used.



B. ANALYTICAL MODEL-BASED BIT ALLOCATION FOR

OPTIMIZATION OF REGION OFINTERESTCODING

In this section, we address the problem of allocating bits to dif-
ferent regions in an image coded with a progressive wavelet coder,
such as ICER, SPIHT (Set Partitioning in Hierarchical Trees) [1] or
JPEG 2000, in order to achieve Region of Interest (ROI) coding ob-
jectives. In most progressive wavelet coders, each wavelet coeffi-
cient is successively refined, bitplane by bitplane, starting with the
most significant bit. When the refinement process starts, most of the
information to be transmitted is zero, e.g., in ab-bit representation, if
most of the wavelet coefficients have magnitudes smaller than 2b−1,
then the most significant bitplane consists mainly of zeros. Various
techniques have been proposed that enable efficient representation
of these zeros. The basic idea is that very little information about a
given wavelet coefficient is sent until it becomes “significant,” i.e.,
until a non-zero bit is reached in the bitplane-by-bitplane progres-
sion. Generally speaking, a progressive coder transmits information
about large-magnitude coefficients before it transmits information
corresponding to smaller coefficients.

This intuition leads to a very simple technique to provide ROI
coding [2, 3]. The goal in ROI coding is for the region(s) of inter-
est to be transmitted with higher quality than other areas in the im-
age. Since large coefficients are sent first, it is enough to divide the
wavelet coefficients in areas outside the ROI by a factor greater than
one, so that they are transmitted later (on average) in the resulting bit-
stream. We call this dividing factor thepriority scaling factor(PSF)
ρ. At the decoder the reconstructed coefficients are then multiplied
by the corresponding PSF before inverting the wavelet transform.
Since all the coefficients (after scaling) have been refined to a partic-
ular bitplane it follows that those coefficients to which a PSFρ > 1
has been applied will be more coarsely quantized, i.e., their binary
representation will be “shifted” with respect to coefficients with PSF
ρ = 1. As a result, more bits per pixel are used (on average) for the
ROI than for the rest of the image.

This approach, proposed in [2, 3], is a simple and effective way to
achieve the goal of providing a different bit allocation for each region
in an image. Prior work on bit allocation for ROI coding was based
on heuristic techniques or required that rate-distortion characteristics
be measured at each of the potential operating points. For example,
a design based on empirical data could start by measuring overall
image rate-distortion data at a number of different PSF values, and
then proceed to selecting the optimum or the most appropriate PSF
for the application.

The main contribution of our work is to provide a model-based bit
allocation technique to determine the different PSFs to be used in an
image, given a distortion criterion based on the relative importance
of each region. Our goal is to choose the PSFs such that a total rate
budgetR is met and a criterion based on the relative distortions of the
regions is optimized. We take SPIHT as an example for which our
analysis is valid. Other progressive wavelet coders can be similarly
modeled.

Without loss of generality we consider only two regions, and di-
vide the wavelet coefficients outside the ROI by a value of PSF to be
determined from the model. The region of interest is designated as
region 1, and the rest of the image is called region 2. In Figure 4,
we show wavelet coefficients{x1(i ), i = 1, . . . , N1}, for region 1,
and{x2(i ), i = 1, . . . , N2}, for region 2, sorted in descending order
of magnitude. Since the coefficients in region 2 are divided while
the coefficients in region 1 are left unchanged, this means that the

Figure 4: Sorted wavelet coefficients in two regions.

progressive bitplane refinement operates differently in each region.
If the final coefficient sent at the final refinement has magnitude�,
then coefficients larger than� in region 1 are significant, while in
region 2 the only significant coefficients are those with magnitude
larger thanρ�. Equivalently, it is as if different quantization bins
were used for region 1 and region 2, namely� andρ�, respectively.

i. Rate-Distortion Models
Our approach is an extension of Mallat’s work [4], which provides

a model for rate and distortion in a progressive wavelet coder. In this
model, the average distortionD(M)of an image is represented as

D(M) =
(

1 + 1

12

)
1

N

N∑
i =M+1

|x(i )|2 (4)

whereN is the total number of wavelet-transformed coefficients,M
is the number of significant coefficients, and{x(i ), i = 1, . . . , N} are
the wavelet coefficients sorted in monotonically decreasing order by
amplitude. The number of significant coefficients is directly related
to the bit rateR according to

M =
(

N

5.8

)
R (5)

The coefficients 1
12 and 5.8 in (4) and (5) are fixed constants for

arbitrary images for the SPIHT codec used in our experiments.2

For ROI coding, we can write separate distortion equations for
each of the two regions:

D1(M1) =
(

1 + 1

12

)
1

N1

N1∑
i =M1+1

|x1(i )|2 (6)

D2(M2) =
(

1 + 1

12

)
1

N2

N2∑
i =M2+1

|x2(i )|2 (7)

The overall rateR is still given by (5) in terms of the total number of
significant coefficients transmitted,M = M1 + M2.

ii. Optimization of Bit Allocation for ROI Coding
We can reduce the distortion in region 1 by increasingM1. But

for a given overall rateR this increases the distortion in region 2
becauseM2 must be reduced to keepM = M1+ M2 constant. There
are many possible distortion criteria that can be used to encode an

2in this work we used version 6.05 of SPIHT



image with ROIs. For example, one could decide on a minimum
acceptable quality for region 2, determine the requisiteM2 from (7),
and then assign the remaining significant coefficients to region 1,
M1 = M − M2.

We consider another case where the goal is to optimize a weighted
distortion metric, which assigns a higher weight to the distortion in
region 1. In other words, we seek to minimizew1D1(M1)+D2(M2),
w1 > 1, subject toM1 + M2 ≤ M . Lagrangian optimization tech-
niques can be used [5] in this case to determine the optimumM1, M2
from (6) and (7).

iii. Determination of the Optimum Priority Scaling Factor
After an optimum pairM1, M2 are determined according to the

desired distortion criterion, it is a simple matter to locate the smallest
coefficients declared to be significant in each region, namelyx1(M1)

and x2(M2). Then from the earlier discussion it follows that the
desired PSF is

ρ = |x2(M2)|
|x1(M1)| . (8)

This is illustrated in Figure 4.

iv. Experimental Results
For our experimental results, we applied the weighted distortion

criterion to the standard gray-level lena image of size 512×512, with
a rectangular ROI of size 16× 16 in the middle of the image. The
whole image, after dividing the wavelet coefficients outside the ROI
by the PSF, is coded by SPIHT at rate 0.5 bps. Figure 5 compares the
results achieved using our model-based PSF with those derived from
an exhaustive search of admissible PSFs. The figure shows mean
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Figure 5: Performance of model-based bit allocation for a
weighted distortion criterion.

squared error (MSE) distortion, for both the ROI and the remainder
of the image outside the ROI, versus the relative distortion weight
factorw1. It compares results obtained by selecting the PSFρ based
on our model to those obtained by exhaustive search for the value of
ρ ∈ {1, 1.1, 1.2, . . . , 400} that provides the best weighted distortion.
We see from the figure that the MSEs achieved by our model-based
PSF very closely approximate those achieved by the PSF obtained
by exhaustive search, both inside and outside the ROI.

C. RATE CONTROL OF PRIORITIZED DATA WITH A BUFFER

CONSTRAINT

We assume that each image is progressively coded to produce a
chain of packets that can be truncated after an arbitrary number of
packets to yield reconstructions of varying fidelity. For a given image
the packets are sequenced according to their order of importance in
the progressive stream, i.e., a coarser layer is always sent before a
finer layer. To each packet there can be attached a distortion value,
which is the the “provisional” distortion that would be achieved in
reconstructing the image if its chain of progressively coded packets
were terminated without sending the given packet.

The ROI-coded images are stored in a finite buffer and then trans-
mitted through a constant bit-rate (CBR) channel. The central ques-
tion is how to assign bits to each of the images given the constant
channel rate and the limited buffer size. To solve this problem, we
first need to select a criterion for our allocation. Since the objective
is to transmit as much high priority data as possible, we aim to min-
imize the highest level of priority of data that cannot be transmitted.
This is equivalent to the minimax (MMAX) distortion criterion [11]
that measures the distortion of the coded image that has higher dis-
tortion than all other coded images in the image sequence.

In our problem, the constraints are a constant transmission rateC
and buffer sizeB. We assume one image is coded everyT seconds
and is immediately moved to the transmission buffer after encoding.
Then the “off-line” optimal solution based on the MMAX criterion
(OOM) can be formulated as follows.

Minimize : max
i

(Di ), (9)

subject to the constraint

Bi ≤ B for all i, (10)

whereDi is the distortion of thei th image, andBi is the buffer oc-
cupancy after coded packets from thei th image are moved into the
buffer, i.e.,Bi = max

(
0, Bi −1 + Ri − C × T

)
, whereRi is the se-

lected bit allocation for thei th image andC×T is the number of bits
transmitted during the interval since the previous image. For a given
imagei , the rate-distortion pair (Ri , Di ) is determined by selecting
the number of packetsni to transmit, i.e., the point at which to trun-
cate the corresponding packet chain. The off-line optimal algorithm
can be described as follows:

Algorithm OOM (Off-line Optimal bit allocation in a CBR channel
with buffer constraints under the MMAX distortion criterion):
Step 0:Initialize buffer occupancy and quantize all images with the
coarsest quantization available.
Step 1:Find the image i that has maximum distortion Di , and incre-
ment the number of retained packets ni for this image. This decreases
the distortion Di of the ith image, and increases its bit allocation Ri .
Step 2:Simulate the buffer behavior by placing all the images in the
buffer, in the order in which they are generated and with their current
bit allocation.
Step 3:If the buffer has not overflowed then go to Step 1. Otherwise,
undo the last adjustment in Step 1 and STOP.

After application of the OOM algorithm, the image with maxi-
mum distortion is the one for which it was not possible to increase
the number of packets without producing buffer overflow. Fig. 6 de-
picts an example of OOM. The slope of the diagonal lines is the
transmission rate per image arrival,C × T , and the distance between
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Figure 6: Buffer occupancy in CBR transmission for off-line
optimal bit allocation under the MMAX criterion.

the two diagonal lines is the size of the transmission buffer,B. The
buffer occupancyBi at the time of processing thei th image is in-
dicated by the vertical distance from the lower diagonal line to the
solid staircase line. The height of an individual riser of this staircase
above the lower diagonal is the bit allocationRi for the i th image.
Thick lines and dashed lines indicate the amount of buffer fullness
and buffer underflow, respectively.

The OOM algorithm can only be implemented if the rate-
distortion characteristics of all images are known in advance. In a
real situation, decisions must be made on current images before the
statistics of future images are known. Therefore we would like to
establish whether there exist good “on-line” methods that achieve
performance close to that of the off-line optimal algorithm.

In this paper, we show that an on-line method with buffer sorting
under the MMAX criterion (OSM), achieves the same performance
as OOM, as long as the granularities of buffer admissions and trans-
missions are the same. To show this, we add a granularity constraint
that B, Ri andC × T are all integer numbers of packets, where a
packet is the basic data unit produced by the progressive coder and is
also the basic unit of sorting. Packets from a new image always come
into the buffer immediately after transmission of another packet is
finished (except when the buffer was empty).

The on-line method with buffer sorting can be described as fol-
lows. The buffer admits packets sequentially in real time as each
image’s chain of packets is coded. All packets are accepted until the
buffer starts to overflow. When overflow occurs, the packet with the
lowest priority in the entire buffer is always the one discarded. Con-
versely, the packet with the highest priority is always the next packet
transmitted. The highest priority packet is the one whose provisional
distortion value is highest, and the lowest priority packet is the one
whose provisional distortion value is lowest.

First we show that OSM is not better than OOM. If OSM were to
outperform OOM, then at least one more packet should be sent for
the image that has maximum distortion. But the image with high-
est distortion under OOM is the one that causes a transition to the
buffer-full state; otherwise, its distortion could have been reduced by
retaining one more packet. For the example in Fig. 6, this is the 5th

image. If it were possible to send more packets under OSM to reduce
the maximum distortion, a packet from the maximum-distortion im-
age would have to be moved to a different time interval since the

buffer would overflow if any packet were added during its own time
interval. But a packet cannot be moved to previous intervals since
the system is causal, and it cannot be moved to later intervals since
the buffer is already full and cannot hold any more packets for later
admission. Therefore, OSM cannot be better than OOM.

Next, we show that OOM can be achieved by OSM. This follows
because OSM always transmits the highest priority packets, always
keeps the buffer as full as possible, and only discards packets with
lowest priority. Any packet for imagej that is dropped under OSM
must have been discarded during the time interval for some image
i ≥ j . At the time of its discard, that packet must have had lower
priority than any other packet retained in the buffer, i.e., the buffer at
time i was completely full of higher priority packets. Under OOM
all of these higher priority packets would have been admitted ahead
of the given discarded packet, and the buffer-full state would have
been reached at timei , thus disallowing further admittance of lower
priority packets. Thus, no packet discarded by OSM could ever have
been admitted to the buffer by OOM. This shows that we can achieve
the off-line optimal solution under the MMAX criterion by using the
on-line method with full buffer sorting.

The preceding analysis ignores the fact that there is a need to
transmit header information under OSM to tell the decoder the image
index of each sorted packet. However, for reasonably sized buffer
packets the price of this overhead is small.
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