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1 Preliminaries

Throughout, we assume an RS code with paramaters (n,k = v + 1). We assume this code consists of
codewords whose symbols C' are members a finite field F' = GF(q). A codeword C = (C,Cs,...,Cy,)
is transmitted. We are given a Guruswam-Sudan (GS) decoder, whose input takes the form of a
nonnegative integer! "multiplicity matrix" M. The aim of our discussion is to optimally map the channel
output to a matrix M, such that the probability of decoding error for this particular codeword is
minimized. We say there is a decoder error if the causal codeword is not on the decoder’s list. We
would also like to know the probability of error at this optimum.

We start by representing the channel output as a probability matrix x with n columns {y,} (one for
each ;) and g rows (for each possible value of C;). The entry x;(b), b € F, is the a posteriori probability
that the ith symbol in C is b. We can alternatively think of this matrix as a received random vector
X = (X1, X2, ..., X,,), where the distribution on each X; is given by the column x;, i.e.

Pr{X; = b} = x;(b).

Our desired multiplicity matrix M, as x, has a column M; for each C; and a row b for every element
in I'. We define the "cost" of M as:

1 n
Py (D) - (M
C(M) = 3 E E M;(b) - (M;(b) + 1),
1=1 beF
and the "score" of M with respect to C as:

n

s, M) = ZMi(Ci)

=1

Lastly, we assume that the GS decoder succeeds iff?

S(C, M) > \/2vC(M).

T use the convention that an "S matrix", where S is a set (e.g., integers, real numbers), is simply a matrix whose
elements are all members of S.
2In fact, this is only an approximation to the sufficient condition for large cost.
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2 Searching for optimal M

Alas, S(C, M) is not known since C itself is unknown, and we cannot know with certainty whether the
decoder will succeed for a given matrix M. Thus, we define a new "score" of the received vector X with
respect to M as:

S(X, M) & i M;(X;).

(Often, we assume the probability matrix x and multiplicity matrix M are known, so we suppress
the dependence on X and M, referring to the score as simply S. ) The quantity M;(X;) is a discrete
random variable with distribution

Pr{M;(X;) = M;(b)} = Pr{X; = b} = x;(b), for each b € F,

and so our new "score" S = S(X, M) is also a random quantity, with distribution

Pr{s=v} = S J[wlw)

X, i=1
where X, = {X = (v1,29,....,7,) : S(X,M)=0uv}

Therefore, we can express the probability of decoder failure as®:

Pr(x, M) 2 Pr{S(xM) < 2VC(M)}.

Our first problem is to find an M of cost no greater than v that minimizes Pg for a given y. That
is, perform the following minimization:

M, = argmin Pg(x, M),
M:C(M)<~

and we call the probability of error at this optimum point Pg(x,7), i.e.:

Pi(x,7) 2 Pe(x, M,).

The probability of decoder failure for this particular codeword can be no lower, given the posteriori
probability matrix x and cost constraint ~.

If we disregard the cost constraint, we have the lowest possible probability of decoder failure for a
particular codeword given by:

3To compute Pg(x, M), we can resort to the following exhaustive approach:

Pp(x,M) = ) Pr{X}
A
where A = {X:S(X,M)§ \/QZ/C(M)}
and Pr{X = (b1,b2,...,bn)} = 1_"[ Pr{X; =b;}

i=1
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3 Settling for optimal @)

Optimizing over the space of nonnegative integer matrices M € M turns out to be a difficult problem.
We will instead optimize over a much larger space, that of nonnegative real matrices ) € Q. Note that
M C Q. As with M, we label the columns of Q as (Q1, Q2, ..., @»). We define a cost function as before:

CQ) =53 Qi) (@) + 1),

i=1 beF

and a score with respect to @ of X:

i=1
where X;, Q;(X;), and S are all random quantities ¥i. And we define:

Po(v.Q) 2 Pr{S(X,Q)S 2yC(Q)}

@7 £ argmin Pr(x,Q)
Q:C(Q)<y

PE‘(XaV) £ PE(X7@’Y)
Pr(x) Jin Py (6 ).

Because M C Q, we are guaranteed that:

Pi(x;7)
Pp(x)

<
< Pe(x)

One nice property of Q is that if @ € Q, then A\Q € Q, where A € RT U{0}. Thus, for example, we
can compare the cost of ) and \Q.

caQ) = % Z(/\Qib + 1DAQip
Wb
= S RQu X (AN
Wb
= X0Q+5 3@,
ib

For A > 1, (A — A\?) < 0, which implies*:
C(Q) < CAQ) £ A*C(Q), (1)
with equality iff A = 1. We can compare the probability of decoder failure for these two matrices:
Po(x,AQ) = Pr{AS < /20C(\Q)} since S(X, Q) = AS(X, Q)
= Pi{S < 1V2O0Q)

= Pr{S < 1V2O0Q) < VEOWQ)) by (1),
Pi{S < V2O@Q)}

PE (Xa Q)7
4The first half of the inequality, C(Q) < C(AQ), is trivial.

IA
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which, written another way, is:

Pr(x,Q/\) > Pr(x, Q) for all A > 1.

Thus, we are guaranteed that for every ) such that C(Q) = v the set Q«, = {Q/X : A > 1}, has
Pr(x,Q") > Pe(x,Q) VQ' € Q<. It can be shown that?

U Q< =1{Q:0@Q <A}

{Q:C(Q)=~}
Thus,
min Pgr(x,Q) > min Pg(x,Q),
o e (X, Q) omin E(X, Q)
and:

Pi(x,v) = C?éi)ngE(mQ)

= min Pg(y, Q).
O, r(X: Q)

Theorem 1 Pg(x) = Pi(x)-

Proof. Theorem 2 implies that for any @ there exists a nonnegative integer matrix M = f(Q) such
that Pg(x, M) < Pgr(x, Q) (see below). Thus, for any minimizing matrix Q"

Q" = argmin Pr{S(Q) <./ 2vy},
Q:C(Q)=y

with Pr(x,y) = Pr(x,Q)=Pr{S(Q") < 2vy},
there is some M = f(Q') for which

But y is completely arbitrary, so we can never find a y large enough so that P (x,y) < Pr(x, M) for
all M. This implies

Pp(x) = lim Pp(x,y) > Pp(x) = lim Pp(x.y)
y—o0 y—o0
However, M C Q, so Pj(x) < Pe(x) and Pg(x) = Pi(x). =

Theorem 2 For any nonnegative real matriz ) there exists a nonnegative integer matric M = f(Q)
such that Pr(x, M) < Pg(x, Q).

Proof. Choose

M = f(Q)=[AQ], where A is any scalar such that
2
A > 3z + \/922 + 8znq’ where )
z
2 o= ) Q). (3)
ib

Show?
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Then,
S(X, M) = Z[AQJ,where Qi = Qi(z)

> ZAQi
= f;-S(X,Q), for any X = (z1,22,...,Tp)
Pr{S(X, M) < \/2vC(M)} <Pr{A-S(X,Q) < /2vC(M)}, (4)

since for any distribution on X, the event {S(X, M) < \/2vC(M)} = {A- S(X,Q) < /2vC(M)}.
Now, Theorem 3 implies

This implies

C(M) < A2C(Q).
Therefore,
Pr{A-S(X,Q) < \/2vC(M)}
Pr{4-S(X,Q) < v2wC(M) < A2 C(Q)}
Pr{S(X,Q) < /2vC(Q)}
Pp(x, Q).

Combining this result with equation (4), we have:

Pr{S(X, M) < \/2vC(M)} < Pg(x,Q)
= Prp(x, M) < Pr(x, Q).

Al

m
Theorem 3 C(M) < A%2C(Q)
Proof.
ooy = Z [AQin] ([AQin] +1)
< %Z AQuy + 1)(AQw +2)
ib
— ( Asz+A Asz+2 Z Asz+2 )
i,b
= ( le Asz + A + 2A Z sz + 1) (A - 1) Z(AQZZ) + 2))
@b ib
= A20(Q)+ (2A(z +nq) — (A —1)(Az + 2nq)), recall z = ZQib, and Z 1 =nq
< A0Q)
iff

2A(z +nq) — (A —1)(Az + 2nq) <0,

32+ /922 + 8zngq
> ;
2z

which is satisfied when

which is true by assignment (2). m
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4 Defining an equivalent problem: G(x, B)

Let

F(x,z,y) = min Pr{ZQi(Xi)gx}

C:C(Q)=y
in P Ri(X;) < B,
. {Z ) }

where R;(b) is a nonnegative real number for all 7, b.
F(-) relates to our previous minimization problems as follows (substitution):

G(x, B)

Pp(x,y) = F(x,2vy,y)
Pp(y) = lim F(x, v/2vy,y)

Theorem 4 limy, ... F(x, B\/2y,y) = G(x, B) for all B > 0.

Proof. Given a matrix @ with C(Q) = y, we define a new matrix R of the same dimensions with

Ri(b) = K(y) (Qi(b) + %) 7
1

where K(y) = \/ﬁ

Then,
ZRi(Xi) = K(y) ZQi(Xi) + %K(y)n, for any choice of X;’s,
and
IRIP = > Ri(0)
ib
_ v (@m+3)
= 2
1

T 2y +tng/d (; Qi(0)(Qi(b) +1) + nq/4)

_ 2ytng/4

2y +ng/4

= 1, for all y.
Thus

PY{ZRi(Xi)SK(y)(:C—I—nﬂ)} = Pr

i

|
g
=
/—/ﬁ —
o
>
IN
8
——
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Now, because C(Q) =y = ||R||* = 1, then

¢ (KW +3)) < Flxay),

since we are minimizing the same quantity on both sides of the inequality, but the search space on the
left is at least as big as that on the right. This immediately implies

lim G (X7K(y)(B\/2y+ g)) < Jim F(x, Bv/2y,y)

Yy—00

& G(x,B) < lim F(x,B+\/2y,y). (5)
y*)OO

Conversely, if we are given a matrix R of positive real numbers satisfying ||R||> = 1, we can choose
a cost ¢, and define a new matrix @) such that

Thus,
n
min Pr R;<B}> lim min Pr E ; < B\/2y +ng/4— =
R||R[]?=1 {; } y—00 Q:C(Q)=y {iQ Y qa/ 2}

since now ||R||? =1 = C(Q) = y. Then,

min Pr R, <B};> lim min Pr i < By/2
RIS DOLET) S TS S

& G(x,B) > lim F(x, B\/2y,y).
Yy—00

The matrix:

@, = argmin Pr {Z Qi(X;) < v 21/9}

Q:C(Q)=y

represents the optimal real multiplicity matrix, for a cost constraint of y. We could use
M, = round(Qy)

as an integer approximation to (), with cost approximately equal to y, and score approximately equal

to S(Q,). Then
Pr{S(My)S\/m} ~ Pr{S(Qy)S 2VC(Qy)}

= Pr(x,v)
= F(x,v2vy,y).
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Let R be the minimizing matrix on the RHS of:

R:||R||?=1

i.e., the optimal real multiplicity matrix for cost tending to infinity. Then the matrix

Qr(y) = R(2y + ng/4)"/* - %

represents a good approximation for ¢, when y >> ng. Finally, the minimum probability of de-
coder error for our transmitted codeword, given probability matrix y, and regardless of the cost of the

multiplicity matrix, is:
Pr(x) = G(x; V).

5 Chernoff Bounds

The quantities:

QR:C(Q)=y

F(x,v/2vy,y) = _ min Pr{ZQi(Xi)S\/%}

R:||R|]2=1

G(x,vv) =  min Pr{ZRi(Xi)g\/Z}

are in general difficult to compute. We circumvent calculation of full probability distributions by using
the Chernoff bound. We let

E{exp(—sQ;)}
= 3 (b exp(—sQu(b)

beF

9i(s)

be the moment generating function for ;. Then the moment generating function for S = >, Q:(X;)

go(s) = E {exp <—Si@l>}
= K {ﬂeXP(_SQi)}

n
= H gi(s), by independence assumed in the Koetter-Vardy paradigm.
i=1

The Chernoff bound in this case is )
Pr{S <z} < Kq(x,z),

where

ST

Ko(x,z) = rggm(ﬂﬁ;
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which we will assume, for our purposes, is quite tight®. Now, if we define

F(x,x, = min K , T
(=, y) olin Kolx, )
G , = min K, , T
(@) o i Kolx.®)
then
Pixy) < Flx,V2vy,y)
Pp(x) < G, vv).

Thus, we have bounded the probability of error for finite and infinite cost multiplicity matrices.

For finite cost, B B
Qy = argmin Kg(x, /2vy)
Q:C(Q)=y
achieves a probability of error close to Pi(x,y). We set our multiplicity matrix My = 7’0und(@3’,)7 as
before. The cost of M, is approximately y, and the score of M, is approximately S(Q,), so we hope
that:

Q

Pr{S(M,) < \/2vC(M,)} Pr{S(Qy) < /2vC(Qy)}

= F(x,\/2vy,y)
= Pr(x,y) +e

with £ > 0 small, since the bound is tight.

For infinite cost,

G(X7 \/;) = min KR(Xa \/;) = lim F(X’ 2Vyay)
R:||R||?=1 Yy—0o0

represents an approximation to the probability Pg(x), with

6 Experiments

6Because, in practice, we will be dealing with Pr{S < z} very close to zero.
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