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Abstract — In an attempt to determine the ultimate
capabilities of the Sudan/Guruswami-Sudan/Kötter-
Vardy algebraic soft decision decoding algorithm for
Reed-Solomon codes, we present a new method, based
on the Chernoff bound, for constructing multiplicity
matrices. In many cases, this technique predicts that
the potential performance of ASD decoding of RS
codes is significantly better than previously thought.

I. Introduction

Through the seminal work of Guruswami-Sudan (GS) [1],
and Kötter-Vardy (KV) [2], we now have a polynomial-time
algebraic soft decision (ASD) decoding algorithm for Reed-
Solomon codes. In this paper we offer a methodology for as-
signing multiplicities used by the GS algorithm and thus an
ASD algorithm with an improved performance over previously
proposed algorithms [2, 3]. The idea is to choose the multi-
plicity matrix so as to maximize the probability that the causal
codeword is on the decoder’s list, as suggested in [3], rather
than to maximize the expected score of the causal codeword,
as is done in [2]. However, whereas in [3], a Gaussian ap-
proximation is employed, we use a Chernoff bound instead. It
was independently suggested in [4] to use the Chernoff bound
in optimizing symbol based multiplicity matrices for the case
of infinite costs and discrete memoryless channels.

Let an (n, k) RS codeword over GF (q) be represented by
a binary (q × n) matrix C determining which symbols were
sent. The soft output of the channel is represented by an
(q×n) matrix Π of a-posteriori probabilities. The multiplicity
assignment optimization problem is to generate a multiplicity
matrixM of non-negative integers that will minimize the error
probability P (Π, |M |) = P{SM (C) < ∆(M)} where ∆(M) is
a function of |M |, the interpolation cost of M , and k. SM (C)
is the dot product of M and C and is termed the score [2].

II. Optimization Problem

Let G(ν,M) = E{e−νSM (C)} be the moment generating
function of the score, then the Chernoff bound says

P (Π, |M |) ≤ min
ν≥0

e
ν∆(M)

G(ν,M).

Since integer optimization is hard we relax the constraint
that the entries of M are integers and let the associated error
probability be P ∗(Π, |Q|). In fact the following theorem shows
that if cost is no object we loose nothing by this relaxation.

Theorem 1 Let P (Π) = limγ→∞ P (Π, γ) and P ∗(Π) =
limγ→∞ P ∗(Π, γ), then P ∗(Π) = P (Π).
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ASD of (15,11) RS code BPSK modulated over AWGN Channel
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Fig. 1: (15,11) RS code BPSK modulated over an AWGN channel

Thus, for a finite cost γ, the relaxed optimum matrix,
Q, is found by solving the constrained optimization prob-
lem, Q = argmin|Q|=γ minν≥0 (ν∆(Q) + logG(ν,Q)), using
the Langrange multipliers technique. (The optimized Lan-
grangian is convex in both ν and Q.) An algorithm is thus
developed that will iteratively solve for the optimum ν and Q.
For the case of an infinite cost multiplicity matrix we make
use of the following theorem in deriving the algorithm,

Theorem 2

P (Π) ≤ min
‖Q‖2=1

min
ν≥0

(

ν
√
k − 1 + logG(ν,Q)

)

.

III. Results

In Fig. 1, we refer to our algorithm, the algorithms of [2]
and [3] as Chernoff, KV and Gauss respectively. For the
(15,11) RS code, infinite cost γ, and an error rate of 4× 10−8,
our algorithm has about 0.85 dB, 1.75 dB and 2.5 dB coding
gains over the Gauss, KV and Berlekamp-Massey algorithms
respectively. Simulation results for a cost of 104 also show the
potential of our algorithm over previously proposed ones.
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