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Abstract: Poset belief propagation, or PBP, is a flexible generalization of ordinary belief
propagation which can be used to design algorithms for solving (approximately) many
probabilistic inference problems, including MAP decoding of binary linear codes. In this
paper, we will present some experimental results tha suggest that PBP can significantly
outperform conventional BP techniques.

1. Introduction.
In [4], building on the pioneering work of Yedidia, Freeman, and Weiss [10] on “generalized
belief propagation,” McEliece and Yildirim introduced a class of algorithms called belief
propagation on partially ordered sets, or PBP. (Similar algorithms have recently been de-
veloped in [11] and [5, 6]). PBP includes as special cases ordinary belief propagation [7],
probability propagation [8], the generalized distributive law [1, 2], the sum-product algo-
rithm [3], generalized belief propagation [10], (all of these with and without loops), and
many other instances whose effectiveness has not yet been investigated in detail. In this
paper we summarize PBP (including a new “message-free” formulation of the algorithm)
and report the results of some experiments we have performed. Our tentative conclusion is
that PBP can often outperform ordinary BP. This suggests that PBP may prove to be ef-
fective when ordinary BP is not. By the time of ISIT 2003, we expect to be able to report
the results of numerous additional experiments, including experiments with PBP-based
decoding algorithms.

2. The Marginalized Product Density Problem.
Technically, PBP is an algorithm for solving any marginalized product density problem. In
this section we describe the MPD problem.

Let {x1, . . . , xn} be a collection of n variables taking values in the finite set A =
{0, 1, . . . , q−1}, and Let R = {R1, . . . , RM}, be M sparse subsets of {1, 2, . . . , n}. Suppose
we are given a set of nonnegative “local potentials” {αR(xR) : R ∈ R}. (Here we have
introduced the notation xR to denote the components of x which have indices in R).

These kernels define, in principle, a product probability density function;

B(x) =
1
Z

∏

R∈R
αR(xR),

where Z is chosen so that
∑

x∈An B(x) = 1.
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The marginalized product density problem is to compute, exactly or approximately, some
or all of the local marginal densities {BR(xR)}R∈R of the product density, where

BR(xR) =
∑

x\xR

B(x).

Appropriately interpreted, the MPD problem includes as special cases turbo/LDPC
decoding, probabilistic inference in Bayesian networks, certain problems in machine vision,
finite Fourier transforms, and free energy computations in statistical physics.

3. Posets and Junction Posets.
Let P be a finite partially ordered set (see [4,9] for details). The Hasse diagram H = H(P )
for P is a graph with vertex set P , with (ρ, σ) being an edge in H if and only if ρ > σ and if
there is no element τ such that ρ > τ > σ. We represent the ordering of an edge e = (ρ, σ)
by placing ρ “above” σ in the Hasse diagram. We say that the poset P is connected if
the Hasse diagram H is connected. Figures 1-3 show the Hasse diagrams of three small
connected posets.

We assign an overcounting number φ(ρ) to each ρ ∈ P , such that

(3.1)
∑

ρ:ρ≥σ

φ(ρ) = 1, for all σ ∈ P .

The numbers φ(ρ) are integers and are determined uniquely by (3.1). In Figs. 1–3, the
overcounting numbers are shown as labels on the vertices of the Hasse diagrams.

Given a collecton R of subsets of {1, . . . , n} as in Section 2, a poset P is called a junction
poset for R if each element ρ ∈ P is assigned a subset L(ρ) ⊆ {1, . . . , n} and a subset
R(ρ) ⊆ R, such that: ⋃

R∈R(ρ)

R ⊆ L(ρ) for all ρ ∈ P

R(σ) ⊆ R(ρ) if σ ≤ ρ,

and such that the following conditions are satisfied:

Pi = {p ∈ P : i ∈ L(ρ)} is a connected poset, for all i = 1, . . . , n.(3.2)
∑

ρ:i∈L(ρ)

φ(ρ) = 1, for all i ∈ {1, . . . , n} (“1-variable balance”)(3.3)

∑

ρ:R∈R(ρ)

φ(ρ) = 1, for all R ∈ R. (“conservation of energy”)(3.4)

In Figs. 1–3 we have labelled each vertex with a subset of {1, 2, 3, 4, 5}.

4. The Poset-BP Algorithm.
We assume that P is a junction poset for R. Throughout the algorithm, each vertex
ρ ∈ P carries a “belief table” (probability density) bρ(xρ), where xρ is shorthand for
xL(ρ). Initially, the belief at ρ is defined as follows:

bρ(xρ) =
∏

R∈R(ρ)

αR(xR).
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The beliefs are then updated by keeping the product function

Q(x) =
∏

ρ∈P

bρ(xρ)φ(ρ),

which is initially proportional to B(x), invariant, while enforcing edge consistency.
An edge e = (ρ, σ) in the Hasse diagram is said to be consistent if

∑

xρ\xσ

bρ(xρ) = bσ(xσ) for all xσ ∈ AL(σ).

The iteration step of the PBP algorithm is as follows. If the edge e = (ρ, σ) is inconsis-
tent, define the “correction table” as

∆e(xσ) =

∑
xρ\xσ

bρ(xρ)

bσ(xσ)
,

and update the beliefs as follows:

(4.1) bτ (xτ ) ← bτ (xτ ) · ∆e(xσ),

for all τ such that τ ≥ σ, τ �≥ ρ. (But see (5.1), below.) This step makes e consistent (take
τ = σ), and preserves Q(x) (since

∑
τ :τ≥σ,τ �≥ρ φ(τ) = 0).

Beliefs are updated until all edges are consistent, at which point the algorithm has
reached a fixed point and the beliefs {bρ(xρ)}ρ∈P are (hopefully) close to the desired
marginals, i.e.,

bρ(xρ) ≈ Bρ(xρ) =
∑

x\xρ

B(x).

In the next section we report the results of some experiments we conducted to test this
hope.

5. Experimental Results.
To test the effectiveness of PBP, we conducted a series of experiments, with n = 5 and
A = {0, 1}. The local domains were

R = {{1, 2, 3}, {1, 3, 4}, {2, 3, 5}, {3, 4, 5}},

with corresponding local potentials

α1(x1, x2, x3), α2(x1, x3, x4), α3(x2, x3, x5), α4(x3, x4, x5)

There are many possible junction posets for R; we investigated the three shown in Fig-
ures 1–3. We ran PBP on each of the three posets for a thousand random choices of the
local potentials, each time computing the five pairs (bi, b

∗
i ), the exact and PBP approxi-

mations to the “belief” B(xi). The results (for i = 1) are shown in Figs. 4–6. (The tighter
the clusterinng around the line b1 = b∗1, the better the performance.)
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For poset 3, we found that PBP failed to converge with the update rule (4.1), but when
we used either of the modified rules

(5.1)
bτ (xτ ) ← bτ (xτ ) · ∆e(xσ)w

bτ (xτ ) ← bτ (xτ )((1 − w) + w∆e(xσ)),

wtih w < 1, the excellent performance shown in Figure 6 resulted.

6. Conclusions.

Based on the experiments reported here (and on similar experiments not reported) we
conclude that for a given complexity, PBP on a carefully chosen poset is likely to outper-
form ordinary BP. (Notice, incidentally, that a comparison of Figures 4 and 5 indicates a
significant difference between the GDL and the SPA. This is worth investigating.) This
suggests that PBP may prove to be effective when ordinary BP is not. By the time of ISIT
2003, we expect to be able to report the results of a number of additional experiments,
including experiments involving PBP decoding of some nontrivial linear codes.
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Figure 1. Poset 1 (junction graph construction [2]),
showing overcounting numbers and local domains.

Local potentials are assigned to the maximal elements.
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Figure 2. Poset 2 (factor graph construction [3]),
showing overcounting numbers and local domains.

Local potentials are assigned to the maximal elements.
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Figure 3. Poset 3 (cluster variational method [11]),
showing overcounting numbers and local domains.

Local potentials are assigned to the maximal elements.
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Figure 4. Experimental Results — Poset 1.
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Figure 5. Experimental Results — Poset 2.
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Figure 6. Experimental Results — Poset 3.
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