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We propose a new “bottom-up” saliency 
model (GBVS) which exploits the 
distributed nature of graph algorithms.

But first, we organize the standard 
approaches into the following steps:

We propose an alternative to the 
standard activation and normalization 
schemes.

(See [1], [2] for examples)

Approach
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In biology, individual “nodes” (neurons) 
exist in a connected, retinotopically 
organized, network (the visual cortex), 
and communicate with each other 
(synaptic firing) in a way which gives 
rise to emergent behavior, viz., rapid 
scene analysis for salient locations.

Therefore, we propose a distributed, 
graph-based solution which uses local 
computation to obtain a saliency map 
which is everywhere dependent on 
global information.

For both activation and normalization, 
we will construct a directional graph 
with edge weights given from the input 
map, treat it as a Markov chain, and 
compute the equilibrium distribution. 

Graph Construction

We construct a graph as follows:
1. We instantiate a node for every 
location in an input map (feature or 
activation). 

2. We introduce directional edges in 
both directions between every pair 
of nodes.
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3. We assign edge weights as 
follows:

but we multiply the edge weights by a 
Gaussian distance penalty, so that 
nodes which are distant only weakly 
interact. 

This approach is extended to multiple 
spatial scales by introducing nodes at 
every location at every scale, and 
defining the edges and their weights 
the same as before with an appropriate 
definition of distance across nodes at 
different scales.

We we treat nodes as states and edge 
weights as transition probabilities, and 
compute the equilibrium distribution of 
the Markov chain.

If an input map has size NxN, this will 
have time complexity O(N  k) where
k<<N is some small number of 
iterations required to meet equilibrium.

Experiments

For each image in some data corpus, 
we create a collection of saliency maps 
by concatenating various activation 
and normalization procedures 
subsequent to the exact same feature 
extraction step. We then compare 
consistency of each saliency map with 
fixation data using an ROC score (see 
[4]).

For the main results, a corpus of 750 
modifications of 108 grayscale images 
of nature were used from a recent 
study [3].
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Images, together with the human fixations 
(on right, different subjects' shown in 
different colors).
Sometimes, saliency is highly predictive 
(left), but in the absence of strong bottom-
up stimuli, saliency algorithms struggle 
(right).
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Interpretation

Conclusions

Here, we show the mean ROC score for 
images in different bins. Each bin 
corresponds to an "image easiness", 
parametrized as mean inter-subject 
ROC score.

The best and worst settings of 
parameters for the graph-based 
method are show in blue. The best and 
worst settings for the standard 
approach of Itti and Koch [1] are also 
shown (above). 

Below, we see what happens when a 
center-bias is added to the standard 
approaches. Their performance 
improves dramatically, but is still 
significantly lower in some regimes.

Transitions into center nodes are more 
probable on average than transitions 
into any one peripheral node, thus our 
algorithm results in an emergent 
center-bias which is favorable for 
performance.

Also, our algorithm leaves saliency 
mass away from object borders in a 
non-trivial way that cannot be 
mimicked by smoothing alone. 

Also, our approach finds saliency 
values at each location which depend 
on the entire image plane. This is 
different than most modern approaches 
([1], [2]) which rely on local information.

We propose a new, unified framework 
for computing bottom-up saliency 
maps based on a simple, biologically 
plausible, and distributed computation.

The model shows a strong consistency 
with the attentional deployment of 
human subjects on a grayscale natural 
image corpus.

We believe its superior predictive 
power stems from its emergent center 
bias, its ability to pick out salient 
regions away from borders, and its 
implicit use of global information.


