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Abstract

A new bottom-up visual saliency model, Graph-Based Visual Saliency (GBVS), is
proposed. It consists of two steps: �rst forming activation maps on certain feature
channels, and then normalizing them in a way which highlights conspicuity and
admits combination with other maps. The model is simple, and biologically plau-
sible insofar as it is naturally parallelized. This model powerfully predicts human
�xations on 749 variations of 108 natural images, achieving 98% of the ROC area
of a human-based control, whereas the classical algorithms of Itti & Koch ([2],
[3], [4]) achieve only 84%.

1 Introduction

Most vertebrates, including humans, can move their eyes. They use this ability to sample in detail
the most relevant features of a scene, while spending only limited processing resources elsewhere.
The ability to predict, given an image (or video), where a human might �xate in a �xed-time free-
viewing scenario has long been of interest in the vision community. Besides the purely scienti�c
goal of understanding this remarkable behavior of humans, and animals in general, to consistently
�xate on "important" information, there is tremendous engineering application, e.g. in compres-
sion and recognition [13]. The standard approaches (e.g., [2], [9]) are based on biologically mo-
tivated feature selection, followed by center-surround operations which highlight local gradients,
and �nally a combination step leading to a "master map". Recently, Bruce [5] and others [4] have
hypothesized that fundamental quantities such as "self-information" and "surprise" are at the heart
of saliency/attention. However, ultimately, Bruce computes a function which is additive in feature
maps, with the main contribution materializing as a method of operating on a feature map in such a
way to get an activation, or saliency, map. Itti and Baldi de�ne "surprise" in general, but ultimately
compute a saliency map in the classical [2] sense for each of a number of feature channels, then
operate on these maps using another function aimed at highlighting local variation. By organizing
the topology of these varied approaches, we can compare them more rigorously: i.e., not just end-
to-end, but also piecewise, removing some uncertainty about the origin of observed performance
differences.

Thus, the leading models of visual saliency may be organized into the these three stages:

(s1) extraction: extract feature vectors at locations over the image plane

(s2) activation: form an "activation map" (or maps) using the feature vectors

(s3) normalization/combination: normalize the activation map (or maps, followed by a combina-
tion of the maps into a single map)

In this light, [5] is a contribution to step (s2), whereas [4] is a contribution to step (s3). In the
classic algorithms, step (s1) is done using biologically inspired �lters, step (s2) is accomplished by
subtracting feature maps at different scales (henceforth, "c-s" for "center" - "surround"), and step
(s3) is accomplished in one of three ways: 1. a normalization scheme based on local maxima



[2] ( "max-ave"), 2. an iterative scheme based on convolution with a difference-of-gaussians �lter
("DoG"), and 3. a nonlinear interactions ("NL") approach which divides local feature values by
weighted averages of surrounding values in a way that is modelled to �t psychophysics data [11].

We take a different approach, exploiting the computational power, topographical structure, and par-
allel nature of graph algorithms to achieve natural and ef�cient saliency computations. We de�ne
Markov chains over various image maps, and treat the equilibrium distribution over map locations as
activation and saliency values. This idea is not completely new: Brockmann and Geisel [8] suggest
that scanpaths might be predicted by properly de�ned Levy �ights over saliency �elds, and more
recently Boccignone and Ferraro [7] do the same. Importantly, they assume that a saliency map is
already available, and offer an alternative to the winner-takes-all approach of mapping this object to
a set of �xation locations. In an unpublished pre-print, L.F. Costa [6] notes similar ideas, however
offers only sketchy details on how to apply this to real images, and in fact includes no experiments
involving �xations. Here, we take a uni�ed approach to steps (s2) and (s3) of saliency computa-
tion, by using dissimilarity and saliency to de�ne edge weights on graphs which are interpreted as
Markov chains. Unlike previous authors, we do not attempt to connect features only to those which
are somehow similar. We also directly compare our method to others, using power to predict human
�xations as a performance metric.

The contributions of this paper are as follows:

(1) A complete bottom-up saliency model based on graph computations, GBVS, including a frame-
work for "activation" and "normalization/combination".

(2) A comparison of GBVS against existing benchmarks on a data set of grayscale images of natural
environments (viz., foliage) with the eye-movement �xation data of seven human subjects, from a
recent study by Einhäuser et. al. [1].

2 The Proposed Method: Graph-Based Saliency (GBVS)

Given an image I , we wish to ultimately highlight a handful of `signi�cant' locations where the
image is `informative' according to some criterion, e.g. human �xation. As previously explained,
this process is conditioned on �rst computing feature maps (s1), e.g. by linear �ltering followed by
some elementary nonlinearity [15]. "Activation" (s2), "normalization and combination" (s3) steps
follow as described below.

2.1 Forming an Activation Map (s2)

Suppose we are given a feature map1 M : [n]2 ! R. Our goal is to compute an activation map
A : [n]2 ! R, such that, intuitively, locations (i; j) 2 [n]2 where I , or as a proxy, M(i; j); is
somehow unusual in its neighborhood will correspond to high values of activation A.

2.1.1 Existing Schemes

Of course "unusual" does not constrain us suf�ciently, and so one can choose several operat-
ing de�nitions. "Improbable" would lead one to the formulation of Bruce [5], where a his-
togram of M(i; j) values is computed in some region around (i; j), subsequently normalized
and treated as a probability distribution, so that A(i; j) = � log(p(i; j)) is clearly de�ned with
p(i; j) = PrfM(i; j)jneighborhoodg: Another approach compares local "center" distributions to
broader "surround" distributions and calls the Kullback-Leibler tension between the two "surprise"
[4].

1in the context of a mathematical formulation, let [n] , f1; 2; :::; ng. Also, the mapsM , and later A, are
presented as square (n � n) only for expository simplicity. Nothing in this paper will depend critically on the
square assumtion, and, in practice, rectangular maps are used instead.



2.1.2 A Markovian Approach

We propose a more organic (see below) approach. Let us de�ne the dissimilarity of M(i; j) and
M(p; q) as

d((i; j)jj(p; q)) ,
����log M(i; j)M(p; q)

���� :
This is a natural de�nition of dissimilarity: simply the distance between one and the ratio of two
quantities, measured on a logarithmic scale. For some of our experiments, we use jM(i; j) �
M(p; q)j instead, and we have found that both work well. Consider now the fully-connected di-
rected graph GA, obtained by connecting every node of the lattice M , labelled with two indices
(i; j) 2 [n]2, with all other n � 1 nodes. The directed edge from node (i; j) to node (p; q) will be
assigned a weight

w1((i; j); (p; q)) , d((i; j)jj(p; q)) � F (i� p; j � q), where

F (a; b) , exp

�
�a

2 + b2

2�2

�
:

� is a free parameter of our algorithm2. Thus, the weight of the edge from node (i; j) to node (p; q)
is proportional to their dissimilarity and to their closeness in the domain ofM . Note that the edge
in the opposite direction has exactly the same weight. We may now de�ne a Markov chain on GA
by normalizing the weights of the outbound edges of each node to 1, and drawing an equivalence
between nodes & states, and edges weights & transition probabilities . The equilibrium distribution
of this chain, re�ecting the fraction of time a random walker would spend at each node/state if he
were to walk forever, would naturally accumulate mass at nodes that have high dissimilarity with
their surrounding nodes, since transitions into such subgraphs is likely, and unlikely if nodes have
similarM values. The result is an activation measure which is derived from pairwise contrast.

We call this approach "organic" because, biologically, individual �nodes� (neurons) exist in a con-
nected, retinotopically organized, network (the visual cortex), and communicate with each other
(synaptic �ring) in a way which gives rise to emergent behavior, including fast decisions about
which areas of a scene require additional processing. Similarly, our approach exposes connected (via
F ) regions of dissimilarity (via w), in a way which can in principle be computed in a completely
parallel fashion. Computations can be carried out independently at each node: in a synchronous
environment, at each time step, each node simply sums incoming mass, then passes along mea-
sured partitions of this mass to its neighbors according to outbound edge weights. The same simple
process happening at all nodes simultaneously gives rise to an equilibrium distribution of mass.

Technical Notes The equilibrium distribution of this chain exists and is unique because the chain
is ergodic, a property which emerges from the fact that our underlying graph GA is by construction
strongly connected. In practice, the equilibrium distribution is computed using repeated multiplica-
tion of the Markov matrix with an initially uniform vector. The process yields the principal eigen-
vector of the matrix. The computational complexity is thus O(n4K) where K � n2 is some small
number of iterations required to meet equilibrium3.

2.2 "Normalizing" an Activation Map (s3)

The aim of the "normalization" step of the algorithm is much less clear than that of the activation
step. It is, however, critical and a rich area of study. Earlier, three separate approaches were men-
tioned as existing benchmarks, and also the recent work of Itti on surprise [4] comes into the saliency
computation at this stage of the process (although it can also be applied to s2 as mentioned above).
We shall state the goal of this step as: concentrating mass on activation maps. If mass is not con-
centrated on individual activation maps prior to additive combination, then the resulting master map
may be too nearly uniform and hence uninformative. Although this may seem trivial, it is on some
level the very soul of any saliency algorithm: concentrating activation into a few key locations.

2In our experiments, this parameter was set to approximately one tenth to one �fth of the map width. Results
were not very sensitive to perturbations around these values.

3Our implementation, not optimized for speed, converges on a single map of size 25� 37 in fractions of a
second on a 2.4 GHz Pentium.



Armed with the mass-concentration de�nition, we propose another Markovian algorithm as follows:
This time, we begin with an activation map4 A : [n]2 ! R, which we wish to "normalize". We
construct a graph GN with n2 nodes labelled with indices from [n]2. For each node (i; j) and every
node (p; q) (including (i; j)) to which it is connected, we introduce an edge from (i; j) to (p; q) with
weight:

w2((i; j); (p; q)) , A(p; q) � F (i� p; j � q):
Again, normalizing the weights of the outbound edges of each node to unity and treating the resulting
graph as a Markov chain gives us the opportunity to compute the equilibrium distribution over the
nodes5. Mass will �ow preferentially to those nodes with high activation. It is a mass concentration
algorithm by construction, and also one which is parallelizable, as before, having the same natural
advantages. Experimentally, it seems to behave very favorably compared to the standard approaches
such as "DoG" and "NL".

3 Experimental Results

3.1 Preliminaries and paradigm

We perform saliency computations on real images of the natural world, and compare the power of
the resulting maps to predict human �xations. The experimental paradigm we pursue is the fol-
lowing: for each of a set of images, we compute a set of feature maps using standard techniques.
Then, we proccess each of these feature maps using some activation algorithm, and then some nor-
malization algorithm, and then simply sum over the feature channels. The resulting master saliency
map is scored (using an ROC area metric described below) relative to �xation data collected for the
corresponding image, and labelled according to the activation and normalization algorithms used to
obtain it. We then pool over a corpus of images, and the resulting set of scored and labelled master
saliency maps is analyzed in various ways presented below. Some notes follow:

Algorithm Labels: Hereafter, "graph (i)" and "graph (ii)" refer to the activation algorithm described
in section 2.1.2. The difference is that in graph (i), the parameter � = 2:5, whereas in graph (ii),
� = 5. "graph (iii)" and "graph (iv)" refer to the an iterated repitition of the normalization algorithm
described in section 2.2. The difference is the termination rule associated with the iterative process:
for graph (iii), a complicated termination rule is used which looks for a local maximum in the number
of matrix multiplications required to achieve a stable equilibrium distribution6, and for graph (iv),
the termination rule is simply "stop after 4 iterations". The normalization algorithm referred to
as "I" corresponds to "Identity", with the most naive normalization rule: it does nothing, leaving
activations unchanged prior to subsequent combination. The algorithm "max-ave" and "DoG" were
run using the publicly available "saliency toolbox"7. The parameters of this were checked against
the literature [2] and [3], and were found to be almost identical, with a few slight alterations that
actually improved performance relative to the published parameters. The parameters of "NL" were
set according to the better of the two sets of parameters provided in [11].

Performance metric: We wish to give a reward quantity to a saliency map, given some target lo-
cations, e.g., in the case of natural images, a set of locations at which human observers �xated. For
any one threshold saliency value, one can treat the saliency map as a classi�er, with all points above
threshold indicated as "target" and all points below threshold as "background". For any particular
value of the threshold, there is some fraction of the actual target points which are labelled as such
(true positive rate), and some fraction of points which were not target but labelled as such anyway
(false positive rate). Varying over all such thresholds yields an ROC curve [14] and the area beneath
it is generally regarded as an indication of the classifying power of the detector. This is the per-
formance metric we use to measure how well a saliency map predicts �xation locations on a given
image.

4To be clear, if A is the result of the eigenvector computation described in 2.1, i.e., if the graph-based
activation step is concatenated with the graph-based normalization step, we will call the resulting algorithm
GBVS. However, A may be computed using other techniques.

5We note that this normalization step of GBS can be iterated � times to improve performance. In practice,
we use � 2 f2; 3; 4g. Performance does not vary signi�cantly in this regime with respect to �.

6with the intuition being that competition among competing saliency regions can settle, at which point it is
wise to terminate

7http://www.saliencytoolbox.net



3.2 Human Eye-Movement Data on Images of Nature

In a study by Einhäuser et al. [1], human and primate �xation data was collected on 108 images,
each modi�ed8 in nine ways. Figure 2 shows an example image from this collection, together with
"x"s marking the �xation points of three human subjects on this particular picture. In the present
study, 749 unique modi�cations of the 108 original images, and 24149 human �xations from [1]
were used. Only pictures for which �xation data from three human subjects were available were
used. Each image was cropped to 600� 400 pixels and was presented to subjects so that it took up
76� � 55� of their visual �eld. In order to facilitate a fair comparison of algorithms, the �rst step
of the saliency algorithm, feature extraction (s1), was the same for every experiment. Two spatial
scales

�
1
2 ;

1
4

�
were used, and for each of these, four orientation maps corresponding to orientations

� = f0�; 45�; 90�; 135�g were computed using Gabor �lters, one contrast map was computed using
luminance variance in a local neighborhood of size 80�80, and the last map was simply a luminance
map (the grayscale values). Each of these 12 maps was �nally downsampled to a 25�37 raw feature
map.

"c-s" (center-surround) activation maps were computed by subtracting, from each raw feature map,
a feature map on the same channel originally computed at a scale 4 binary orders of magnitude
smaller in overall resolution and then resized smoothly to size 25 � 37. In [2], this overall scheme
would be labelled c = f2; 3g, for 12 and

1
4 , and � = f4g, corresponding to a scale change of 4

orders. The other activation procedures are described in section 2.1.2 and 2.1.1. The normalization
procedures are all earlier described and named. Figure 2 shows an actual image with the resulting
saliency maps from two different (activation, normalization) schemes.

(a) Sample Picture With Fixation

(b) Graph-Based Saliency Map (c) Traditional Saliency Map
ROC area = 0.74 ROC area = 0.57

Figure 2: (a) An image from the data-set with �xations indicated using
x's. (b) The saliency map formed when using (activation,normalization)=

(graph (i),graph (iii)). (c) Saliency map for (activation,normalization)=(c-s,DoG)

Finally, we show the performance of this algorithm on the corpus of images. For each image, a
mean inter-subject ROC area was computed as follows: for each of the three subjects who viewed
an image, the �xation points of the remaining two subjects were convolved with a circular, decaying
kernel with decay constant matched to the decaying cone density in the retina. This was treated as
a saliency map derived directly from human �xations, and with the target points being set to the

8Modi�cations were made to change the luminance contrast either up or down in selected circular regions.
Both modi�ed and unmodi�ed stimuli were used in these experiments. Please refer to [1], [12].



�xations of the �rst subject, an ROC area was computed for a single subject. The mean over the
three is termed "inter-subject ROC value" in the following �gures. For each range of this quantity, a
mean performance metric was computed for various activation and normalization schemes. For any
particular scheme, an ROC area was computed using the resulting saliency map together with the
�xations from all 3 human subjects as target points to detect. The results are shown below.

(a) Activation Comparison (b) Normalization Comparison
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Figure 3: (a) A mean ROC metric is computed for each range of inter-subject ROC values.
Each curve represents a different activation scheme, while averaging over individual
image numbers and normalization schemes. (b) A mean ROC metric is similarly computed,
instead holding the normalization constant while varying the activation scheme.

In both Figures 3 and 4, The boundary lines above and below show a rough upper9 and strict lower
bounds on performance (based on a human control and chance performance). Figure 3(a) and Fig-
ure 3(b) clearly demonstrate the tremendous predictive power of the graph-based algorithms over
standard approaches. Figure 4 demonstrates the especially effective performance of combining the
best graph-based activation and normalization schemes, contrasted against the standard Itti & Koch
approaches, and also the "self-information" approach which includes no mention of a normalization
step (hence, set here to "I").

0.55 0.6 0.65 0.7 0.75 0.8
0.45

0.5

0.55

0.6

0.65

0.7

inter­s ubjec t ROC value

m
ea

n 
R

O
C

 v
al

ue
 fo

r a
lg

or
ith

m

Com paris on of A lgori thm s  E nd­to­E nd

graph
s el f­info
ave­m ax
NL
DoG

Figure 4: We compare the predictive power of �ve saliency algorithms. The best
performer is the method which combines a graph based activation algorithm with
a graph based normalization algorithm.

The combination of a few possible pairs of activation schemes together with normalization schemes
is summarized in Table 1, with notes indicating where certain combinations correspond to estab-
lished benchmarks. Performance is shown as a fraction of the inter-subject ROC area. Overall, we
�nd an median ROC area of 0.55 for the Itti & Koch saliency algorithms [2] on these images. In [1]

9To form a true upper bound, one would need the �xation data of many more than three humans on each
image.



the mean is reported as 0.57, which is remarkably close and plausible if you assume slightly more
sophisticated feature maps (for instance, at more scales).

Table 1: Performance of end-to-end algorithms

activation algo-
rithm

normalization
algorithm

ROC area (frac-
tion10)

published

graph (ii) graph (iv) 0.981148
graph (i) graph (iv) 0.975313
graph (ii) I 0.974592
graph (ii) ave-max 0.974578
graph (ii) graph (iii) 0.974227
graph (i) graph (iii) 0.968414
self-info I 0.841054 *Bruce & Tsotsos

[5]
c-s DoG 0.840968 *Itti & Koch [3]
c-s ave-max 0.840725 *Itti, Koch, &

Niebur [2]
c-s NL 0.831852 *Lee, Itti, Koch,

& Braun [10]

4 Discussion and Conclusion

Although a novel, simple approach to an old problem is always welcome, we must also seek to
answer the scienti�c question of how it is possible that, given access to the same feature information,
GBVS predicts human �xations more reliably than the standard algorithms. We �nd experimentally
that there are at least two reasons for this observed difference. The �rst observation is that, because
nodes are on average closer to a few center nodes than to any particular point along the image
periphery, it is an emergent property that GBVS promotes higher saliency values in the center of the
image plane. We hypothesize that this "center bias" is favorable with respect to predicting �xations
due to human experience both with photographs, which are typically taken with a central subject, and
with everyday life in which head motion often results in gazing straight ahead. Notably, the images
of foliage used in the present study had no central subject. One can quantify the GBVS-induced
center bias by activating, then normalizing, a uniform image using our algorithms. However, if
we introduce this center bias to the output of the standard algorithms' master maps (via point-
wise multiplication), we �nd that the standard algorithms predict �xations better, but still worse
than GBVS. In some cases (e.g., "DoG"), introducing this center bias only explains 20% of the
performance gap to GBVS � in the best case (viz., "max-ave"), it explains 90% of the difference.
We conjecture that the other reason for the performance difference stems from the robustness of our
algorithm with respect to differences in the sizes of salient regions. Experimentally, we �nd that
the "c-s" algorithm has trouble activating salient regions distant from object borders, even if one
varies over many choices of scale differences and combinations thereof. Since most of the standard
algorithms have "c-s" as a �rst step, they are weakened ab initio. Similarly, the "self-info" algorithm
suffers the same weakness, even if one varies over the neighborhood size parameter. On the other
hand, GBVS robustly highlights salient regions, even far away from object borders.

We note here that what lacks from GBVS described as above is any notion of a multiresolution
representation of map data. Therefore, because multiresolution representations are so basic, one
may extend both the graph-based activation and normalization steps to a multiresolution version as
follows: We begin with, instead of a single map A : [n]2 ! R, a collection of maps fAig, with
each Ai : [ni]2 ! R representing the same underlying information but at different resolutions.
Proceeding as we did before, we instantiate a node for every point on every map, introducing edges
again between every pair of nodes, with weights computed same as before with one caveat: the

10performance here is measured by the ratio of (ROC area using the given algorithm for �xation detection)
to (ROC area using a saliency map formed from the �xations of other subjects on a single picture)



distance penalty function F (a; b) accepts two arguments each of which is a distance between two
nodes along a particular dimension. In order to compute F in this case, one must de�ne a distance
over points taken from different underlying domains. The authors suggest a de�nition whereby: (1)
each point in each map is assigned a set of locations, (2) this set corresponds to the spatial support
of this point in the highest resolution map, and (3) the distance between two sets of locations is
given as the mean of the set of pairwise distances. The equilibrium distribution can be computed as
before. We �nd that this extension (say, GBVS Multiresolution, or GBVSM) improves performance
with little added computation.

Therefore, we have presented a method of computing bottom-up saliency maps which shows a re-
markable consistency with the attentional deployment of human subjects. The method uses a novel
application of ideas from graph theory to concentrate mass on activation maps, and to form acti-
vation maps from raw features. We compared our method with established models and found that
ours performed favorably, for both of the key steps in our organization of saliency computations.
Our model is extensible to multiresolutions for better performance, and it is biologically plausible to
the extent that a parallel implementation of the power-law algorithm for Markov chains is trivially
accomplished in hardware.
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